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Abstract 

I 

s i l v e r - 2  a t .  % aluminum a 

causing r a p i d  ra tes  of ox  

The microhardness and l a t  

Silver-magnesium a l l oys  conta in ing  I and 2 a t .  % Mg and a 

loy were i n t e r n a l l y  ox id i zed  under cond i t ions  

dat ion and uni form s t ruc tu res  t o  be formed. 

i c e  parameter o f  t h e  ox id i zed  a l l o y s  were 

measured and they increased l i n e a r l y  w i t h  decreasing o x i d a t i o n  

temperature i n  t h e  range o f  600 t o  900°C. 

a l l o y  w i t h  2 a t .  % Mg was studied. 

decreased t o  constant values dur ing annealing a t  temperatures above 

t h e  ox ida t i on  temperature. The f i n a l  values of hardness and l a t t i c e  

parameter were t h e  same as the  values for  ma te r ia l s  ox id ized  d i r e c t l y  

The annealing behavior o f  t h e  

The hardness and l a t t i c e  parameter 

below t h e  

ce parameter. 

on e lec t ron  microscopic examination of t h e  Ag-2 a t .  % Mg 

ne d ispers on o f  ox ide  

hardness and l a t t i c e  

ogy of t h e  ox ide 

a t  t h e  annealing temperature. Annealing a t  a temperature 

temperature d i d  no t  a f f e c t  t h e  hardness o r  l a t t  ox ida t i on  

Transmi ss 

a l l o y  y i e  ded evidence f o r  the  presence o f  a f 

p a r t i c l e s .  I t  i s  proposed t h a t  t h e  changes i n  

parameter are r e l a t e d  t o  changes i n  t h e  morpho 

dispersion. 
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Figure 1 .  Hardness or l a t t i c e  parameter versus v e l o c i t y .  

F igure 2. 

F igure 3. 

Hardness versus ox ida t ion  temperature for  Ag-Mg a l  loys. 

L a t t i c e  parameter versus ox ida t ion  temperature f o r  Ag-Mg 

a l  loys. 

E f f e c t  of ox ida t ion  temperature on hardness o f  Ag-2.0 at .  % 

A I  a l l o y .  

L a t t i c e  parameter versus o x i d a t i o n  temperature for  Ag-AI 

a1 loy. 

Annealing curves f o r  Ag-2.0 at .  % Mg a l  loy ox id ized  a t  70OoC. 

Annealing curves f o r  Ag-2.0 a t .  % Mg a l l o y  ox id ized  or 

pre-annea I ed a t  800OC. 

Hardness versus ox ida t ion  and annealing temperature f o r  

Ag-2.0 a t .  % Mg a l l o y .  

L a t t i c e  parameter versus o x i d a t i o n  and annealing temperature 

f o r  Ag-2.0 at .  % Mg a l l o y .  

F igure 4. 

F igure 5. 

F igure 6 .  

Figure 7. 

F igure 8. 

Figure 9. 

Figure IO. Elect ron micrograph o f  Ag-2.0 a t .  % Mg a l l o y  i n t e r n a l l y  

o x i  d ized a t  900°C. 

E lect ron d i f f r a c t i o n  p a t t e r n  of  Ag-2.0 a t .  % Mg a i  loy 

i n t e r n a l  l y  oxidized a t  900°C; p o i n t s  A,  B and C correspond 

t o  (2201, (311) and (222) type r e f l e c t i o n s  from oxide phase 

and p o i n t  D denotes r i n g  passing through (200) d i f f r a c t i o n  

spots from matrix. (2.4X) 

( 1 I I ,000X) 

Figure 1 1 .  
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F i gure 

F igure 

2. E lec t ron  d i f f r a c t i o n  p a t t e r n  o f  annealed unoxidized 

Ag-2.0 at .  % Mg a l l oy .  (2.2X) 

E lec t ron  d i f f r a c t i o n  pa t te rn  o f  Ag-2.0 a t .  % Mg a l l o y  

i n t e r n a l l y  ox id ized a t  6OO0C and annealed a 

hours; po in ts  A, B and C correspond t o  (400 , (331) and 

(420) type r e f l e c t i o n s  from ox ide phase and p o i n t  D 

denotes ( I I I )  r i n g  from matr ix .  (3x1 

3 .  

900°C f o r  6-1/4 
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Observations on I n t e r n a l l y  Oxidized 
Silver-Magnesium and Silver-Aluminum A l loys  

The increases i n  the  hardness and l a t t i c e  parameter o f  

i n te rna l  l y  ox id ized  d i  I u t e  ( less than 3 a t .  % I  Ag-Mg and Ag-AI 

a l l o y s  have been determined i n  several i nves t i ga t i ons  (1-71. Bosch 

e t  a i  ( 5 )  determined t h e  hardness and l a t t i c e  parameter as a func t i on  

of t h e  r a t e  o f  ox ida t i on  (i.e., v e l o c i t y  o f  t he  ox ida t i on  boundary) 

a t  900°C f o r  Ag-Mg a l l oys .  I t  was observed t h a t  both t h e  hardness and 

l a t t i c e  parameter increased w i th  increas ing boundary v e l o c i t y  u n t i l  a 

c r i t i c a l  v e l o c i t y  value was reached; a t  h igher  than c r i t i c a l  v e l o c i t i e s  

t h e  hardness and l a t t i c e  parameter remained constant. Add i t iona l  work 

was a lso  c a r r i e d  o u t  a t  some lower ox ida t i on  temperatures (6,8). The 

resu I t s  are summarized schemati ca I l y  i n  Figure I. 

The present study examined t h e  dependence o f  t h e  maximum 

hardness and l a t t i c e  parameter, which could be obtained a t  any g iven 

ox ida t i on  temperature, on t h e  ox ida t i on  temperature f o r  Ag-l a t .  % Mg, 

Ag-2 a t .  % Mg and Ag-2 a t .  % A I  a l  toys. In  o rder  t o  ascer ta in  t h e  

thermal s tab i  I i t y  o f  t h e  ox id ized mater ia ls ,  specimens o f  t he  Ag-2 

at .  % Mg a l l o y  were annealed a t  temperatures below and above t h e  

ox ida t i on  temperature. The r e s u l t s  are compared t o  previous observations 

on such mater ia ls .  

One o f  t he  major obstacles t o  a complete understanding o f  t h e  

s t ructure-proper ty  re la t ionsh ips  f o r  such in te rna l  l y  ox id ized  mater ia ls  

has been t h e  d i f f i c u l t y  of observing t h e  second phase ox ide  p a r t i c l e s  
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which are produced dur ing  i n te rna l  ox ida t ion .  

(7, 9, IO) i n v o l v i n g  transmission e lec t ron  microscopy have y ie lded  d i r e c t  

evidence f o r  t h e  ex is tence of such p a r t i c l e s  i n  i n t e r n a l l y  ox id i zed  

Ag-Mg and Ag-AI a l l oys .  

i n  t h e  present study and these r e s u l t s  a re  compared t o  the  r e s u l t s  

o f  t h e  previous i nvest i gat  i ons . 

Several recent  s tud ies  

A l i m i t e d  amount o f  evidence was a l so  obtained 

Experi ments 

A I  loy Preparation The a l  loys used i n  t h i s  study were prepared i n  

t h e  same manner as those used by Bosch e t .  a l .  ( 5 )  and t h e  d e t a i l s  of 

t h e  mel t ing  and cas t i ng  process have been given elsewhere (8, I l l .  The 

nominal compositions o f  t h e  a l l oys  were I and 2 a t .  % Mg and 2 a t .  % A I ;  

t h e  exact  chemical analysis, as determined by Handy and H a r m  and g iven 

i n  Table I, show t h a t  t h e  low Mg content a l l o y  a c t u a l l y  contained 

1.3 a t .  % Mg wh i l e  the  o the r  two agreed w i t h  t h e  nominal values. 

The cas t  ingo ts  which were 5/8 inches i n  diameter and 6 inches 

long were co ld  swaged t o  1/4 inch diameter rod and t h e  rods r o l l e d  i n t o  

s t r i p s  0.010 or 0.020 inches t h i c k  and 3/8 inches wide. A f t e r  s u i t a b l e  

degreasing the  s t r i p  specimens were annealed for  a t  l eas t  one hour i n  

argon a t  about one atmosphere o f  pressure a t  900°C. 

a l s o  present i n  o rder  t o  remove any oxygen present. This treatment 

resu l ted  i n  complete r e c r y s t a l l i z a t i o n  and a g r a i n  s i z e  of about 0.25 mm. 

Zirconium f o i  I was 
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In te rna l  Oxidat ion and Annealing The r e s u l t s  o f  Bosch e t  a l  (51  

showed t h a t  above a c r i t i c a l  v e l o c i t y  o f  t he  ox ida t i on  f r o n t  t h e  

measured p roper t i es  became independent o f  t h e  v e l o c i t y .  I t  was assumed 

t h a t  these r e s u l t s  were co r rec t  and t h a t  i f  such a1 loys were i n t e r n a l  l y  

ox id ized  i n  a h igh  enough oxygen pressure, then the  t o t a l  range o f  

v e l o c i t i e s  i n  t h e  specimen would be above the  c r i t i c a l  value. he actual  

v e l o c i t y  (v1  of t h e  ox ida t ion  boundary i s  r e l a t e d  t o  t h e  var iab es o f  

t h e  process by the  f o l l o w i n g  equation which has been der ived by several 

authors (2, 12, 131: 

co Do V =  

C, X R 

Eq. I 

where Co i s  t h e  concentrat ion o f  oxygen a t  t h e  surface, Do i s  t h e  oxygen 

d i f f u s i v i t y ,  C, i s  t h e  a l l o y  so lu te  concentrat ion, X i s  t he  d is tance 

beneath the  sheet surface, and R t he  r a t i o  o f  oxygen t o  metal atoms i n  

t h e  ox ide formula. 

p a r t i a l  pressure of oxygen (po l  has t h e  form 

The experimental data ( 14) r e l a t i n g  Co t o  the  

I /2 
co = kP0 Eq. 2 

where k i s  a numerical constant dependent on temperature. Ca lcu la t ions  

based on Eqs. I and 2 and t h e  data on the  s o l u b i l i t y  o f  oxygen i n  Ag 

of  Steacie and Johnson ( 1 4 1  were made t o  determine the  necessary pressure 

of oxygen t o  ob ta in  a minimum ve loc i t y ,  corresponding t o  t h e  center  of 

t h e  sheet, which was appreciably g rea ter  than t h e  appropr ia te c r i t i c a l  

v e l o c i t y  above which the  hardness and l a t t i c e  parameter become 

independent o f  v e l o c i t y .  
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Specimens were ox id ized  a t  a pressure o f  6.4 atmospheres o f  

Meta l lographic  examination of t h e  specimens showed them pure oxygen. 

t o  be completely oxidized, as evidenced by a t h i n  boundary l i n e  down t h e  

center  o f  t h e  specimen cross sect ion.  

values were independent o f  depth below t h e  surface; hence, t h e  correctness 

o f  t h e  procedure was indicated. 

I n  add i t ion ,  microhardness 

In te rna l  ox ida t i on  was c a r r i e d  o a t  by i n s e r t i n g  a specimen 

i n t o  a quar tz  boat i ns ide  a quartz tube which was closed a t  one end and 

a t  t h e  o the r  end b o l t e d  against  a brass mani fo ld  by means o f  an O-ring. 

The brass mani fo ld  had connections through so lenoid valves w i t h  a vacuum 

pump and an oxygen cy l i nde r .  

t h ree  zone furnace (cons is t i ng  o f  t h ree  separate nichrome windings on a 

ceramic tube) a t  t h e  des i red temperature was then placed around t h e  tube. 

The cu r ren t  t o  each winding was c o n t r o l l e d  separately. 

o f  t h e  furnace over  a length o f  a t  l eas t  f ou r  inches was c o n t r o l l e d  t o  

w i t h i n  5 2 O C  over t h e  temperature range o f  500 t o  900°C. 

desi red pressure was then admitted i n t o  t h e  quar tz  tube. 

ox ida t i on  was normally from 15 t o  30 minutes. 

evacuated and t h e  furnace removed from t h e  quar tz  tube. 

The quar tz  tube was then evacuated and a 

The temperature 

Oxygen a t  t h e  

The t ime o f  

The oxygen was then 

Annealing o f  ox id ized specimens was c a r r i e d  o u t  i n  t h e  same 

furnace arrangement, except t h a t  t h e  quar tz  tube was open t o  t h e  

atmosphere. 

Metallography Fol lowing i n te rna l  ox idat ion,  specimens were mounted 

and prepared by normal metal lographic techniques. The etchant  used 

was an aqueous s o l u t i o n  of  2% each o f  chromic and s u l f u r i c  acids. 

i n t e r n a l  ox ida t i on  boundaries were c l e a r l y  del ineated. 

The 
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C e r t a i  n specimens were exami ned by transmi ss i on e I ec t ron  m i  croscopy 

which a l so  allowed e lec t ron  d i f f r a c  ion  pa t te rns  t o  be obtained. I n  

o rder  t o  prepare f o i l s  s u i t a b l e  f o r  transmission of e lec t rons  and f ree  

from sur face f i lms ,  which are usual y formed on such mater ia ls ,  t h e  

fo l l ow ing  procedure was used. An e l e c t r o p o l i s h i n g  technique was developed 

i n  which t h e  bath consisted o f  an aqueous s o l u t i o n  conta in ing  4% KCN, 

4% K2C03, and 4% AgCN. 

i n  an i c e  bath. The cathodes consisted o f  po inted Ag wires perpendicu lar  

t o  t h e  two faces o f  t h e  specimen. The cathode t o  specimen d is tance was 

about 1/2 inch. The vo l tage was normally between 15 and 20 v o l t s .  The 

specimen was ag i ta ted  by tapping t h e  copper w i re  t o  which it was 

The s o l u t i o n  was i n  a beaker which was immersed 

attached. 

I t  was necessary t o  use a p a r t  

was t h a t  value a t  which the  cur ren t  rema 

c u l a r  optimum vol tage which 

ned approxi mate l y  constant. 

Th is  observation was an important one because t h e  power source was n o t  

continuously on. Fol lowing a suggestion o f  Swann e t  a l  (91, t h e  cu r ren t  

was suppl ied from t h e  D.C. source i n  pulses of about 0.2 seconds dura t ion  

a t  a frequency o f  about 2 pulses per  second. 

.thinning t h e  cu r ren t  o s c i l l a t e d  between zero and a p a r t i c u l a r  value 

which depended on the  specimen s ize.  

t h e  e l e c t r o t h i n n i n g  was ca r r i ed  o u t  i n  cyc les.  The pu ls ing  cur ren t  

was kept  on f o r  20 t o  60 seconds and kept o f f  f o r  s i m i l a r  periods. The 

purpose of  t h e  pu ls ing  and cyc l i ng  was t o  keep f i l m  formation on t h e  

specimen t o  a minimum. 

During optimum e l e c t r o -  

I n  add i t i on  t o  pu l s ing  t h e  current, 
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More mater ia l  was removed from one s ide  o f  t h e  specimen so 

t h a t  t h e  mater ia l  observed i n  t h e  e lec t ron  microscope d i d  no t  represent 

t h e  exact center  o f  t h e  o r i g i n a l  specimen, which might have become 

depleted o f  so lu te  dur ing ox ida t ion .  

holes produced i n  t h e  f o i l s  were prepared f o r  examination i n  a 

Hitachi-HU-l I e lec t ron  microscope operated a t  100 KV. The m a j o r  

d i f f i c u l t y  i n  such examinations was the  lack o f  large t h i n  areas and 

t h e  reduct ion i n  c l a r i t y  and reso lu t i on  due t o  t h e  "oxidytt surfaces 

o f  t h e  mater ia ls .  Selected area d i f f r a c t i o n  pa t te rns  were a l so  obtained. 

Areas near t h e  smal lest  v i s i b l e  

Hardness Hardness val ues were obta i ned w i t h  a Kentron m i  crohardness 

tes te r ,  a Knoop indentor  and an appl ied load o f  100 gms. The average 

o f  from 15 t o  40 readings on any given specimen was obtained. 

X-Ray D i  f f r a c t i  on Measurements A Phi I I i ps  d i f f rac tometer  and n i cke l  

f i l t e r e d  copper r a d i a t i o n  were used t o  determine the  l a t t i c e  parameters 

o f  t h e  mater ia ls .  Instrument a l  I ignment was assured by measuring the  

l a t t i c e  parameter of pure Ag; t h i s  was found t o  be 4.0858 A which i s  i n  

good agreement w i t h  accepted values. Actual l a t t i c e  parameters were 

determined by c a l c u l a t i n g  parameters corresponding t o  i nd i v idua l  d i f f r a c t i o n  

peaks and p l o t t i n g  them versus cos2 8, where 8 i s  the  Bragg angle, and 

ex t rapo la t i ng  a s t r a i g h t  l i n e  through t h e  d a t a  po in ts  t o  cos2 8 = 0. 

The accuracy o f  t he  determined l a t t i c e  parameters was about +, 0.0003 A. 

The widths o f  d i f f r a c t i o n  peaks a t  1/2 o f  t h e  maximum i n t e n s i t y  were 

measured i n  order  t o  determine t h e  presence o f  l i n e  broadening. 

0 

0 
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Exper i menta I Resu I t s  

I 

Hardness and L a t t  i ce Parameter Both t h e  microhardness and l a t t i c e  

parameter of the  Ag-1.3 a t .  % Mg, Ag-2 at .  % Mg, and t h e  Ag-2 a t .  % A I  

a l l o y s  ox id ized  i n  the form o f  IO m i l  t h i c k  s t r i p s  were determined f o r  

var ious o x i d a t i o n  temperatures i n  t h e  range of  600 t o  90OoC. 

r e s u l t s  are shown i n  Figures 2-5. I t  i s  seen t h a t  both microhardness 

and l a t t i c e  parameter increase I i n e a r l y  w i t h  decreasing o x i d a t i o n  

temperature. 

These 

A ser ies  o f  annealing treatments were c a r r i e d  o u t  on t h e  

The microhardness was c a r e f u l l y  measured on such Ag-2 a t .  % Mg a l l o y .  

mater ia ls  i n  o rder  t o  determine t h e  e f f e c t  o f  both annealing t i m e  and 

temperature on t h e  o r i g i n a l  ox id ized mater ia l .  The f i r s t  s e t  o f  

experiments were performed on specimens which were ox id ized  a t  70OoC. 

The anneal i n g  temperatures were 7 7 5 ,  800,  850 and 9OO0C, and t h e  r e s u l t s  

are shown i n  Figure 6. Annealing resu l ted  i n  decreases i n  t h e  microhardness 

u n t i l  a c r i t i c a l  t ime was reached, a f t e r  which the  hardness was unaf fected 

by f u r t h e r  annealing. 

A second ser ies o f  experiments were performed on specimens 

which were ox id ized  a t  8OO0C and t h e  annealing temperatures were 850 and 

900°C; the  r e s u l t s  are shown i n  Figure 7. 

mater ia ls ,  a specimen from the previous s e t  of  experiments which was 

annealed a t  8OOOC was given a second annealing t reatment a t  900°C, and 

these data are a l s o  shown i n  F igure 7 .  

I n  a d d i t i o n  t o  these 
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The f i n a l  mean hardness values of t h e  annealed mater ia ls  are 

shown as a func t i on  of  the  annealing temperature i n  F igure 8 together  

w i t h  t h e  data on hardness as a func t ion  o f  ox ida t i on  temperature f o r  

t h i s  Ag-2 a t .  % Mg a l  loy. I t  i s  seen t h a t  a1 1 t h e  data f i t  on one l i ne .  

t on t h e  Ag-1.3 a t .  % Mg o r  

l e r  dependence of hardness on 

No anneal ing  experiments were c a r r i e d  o 

Ag-2 at. % A I  a l l o y s  because o f  t h e  sma 

ox ida t i on  temperature. 

The l a t t i c e  parameters of t h e  specimens o f  the  f i r s t  s e t  of 

annealing experiments were determined a f t e r  t h e  hardness of these 

mater ia ls  had reached t h e i r  f i n a l  values. These values are shown i n  

F igure 9 as a func t i on  of t h e  annealing temperature together  w i t h  

l a t t i c e  parameter values as a func t ion  o f  t h e  ox ida t i on  temperature f o r  

t h i s  same a l l o y .  I t  i s  seen t h a t  a l l  t h e  data f i t  on t h e  same s t r a i g h t  

I ine. 

In order  t o  de tec t  any e f f e c t  o f  annealing a t  a temperature 

below t h e  o r i g i n a l  ox ida t i on  temperature a specimen ox id ized  a t  900°C 

was annealed a t  8OO0C f o r  14-1/4 hours. There was no change i n  the  

hardness o r  l a t t i c e  parameter o f  t h e  mater ia l .  

The previous work of Bosch e t  a1 ( 5 )  and Oswald ( 6 )  ind ica ted  

t h a t  a t  low ox ida t i on  temperatures (e.g. 50OoC) t h e  maximum a t t a i n a b l e  

hardness f o r  t h e  Ag-2 a t .  5 Mg a i  loy could be obtained from ox ida t i on  

i n  a i r .  Accordingly, a 20 m i l  t h i c k  specimen of t h i s  a1 loy was ox id ized  

i n  a i r  a t  5OOOC f o r  62 hours. The measured hardness was 254 KHN, t he  

h ighes t  observed hardness fo r  t h i s  a l l o y ,  and t h e  hardness was constant 

throughout t h e  cross sec t ion  o f  t h e  specimen. The hardness o f  t h i s  
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specimen i s  p l o t t e d  in. Figure 8 and it i s  seen t h a t  t h e  d a t a  p o i n t  f a l l s  

on t h e  same l i n e  as the  other  data. The sur face o f  t h i s  specimen was 

somewhat unusual. 

f a c t  t h a t  each g r a i n  was s l i g h t l y  bulged outward from the  surface. 

Microscopic examination ind ica ted  t h a t  t he re  was some degree o f  

i n t e r c r y s t a l  l i n e  f r a c t u r e  i n  the  mater ia l  i n  t h e  as-oxidized cond i t ion .  

The specimen was extremely f r a g i l e  and no x-ray d i f f r a c t i o n  work was 

poss ib le .  However, these observations would i nd i ca te  t h a t  t h e  l a t t i c e  

parameter increase i n  t h i s  mater ia l  was t h a t  which would be ind ica ted  

by ex t rapo la t i ng  t h e  data o f  F igure 9 t o  500 O C .  

The g ra in  s t r u c t u r e  was made v i s i b l e  because o f  t h e  

A specimen s i m i l a r l y  o x i d  zed a t  5OO0C i n  a i r  was a l so  g iven 

an annealing treatment a t  8OO0C f o r  24 hours. 

found t o  be 194 KHN and constant throughout t h e  cross section; t h i s  

value i s  a l so  p l o t t e d  i n  Figure 9 .  This  data p o i n t  a l so  f a l l s  on t h e  

s t r a i  gh t  I i ne drawnnthe other data. 

The annealed hardness was 

**q Ir 

L i  ne Broaden i ng The widths o f  several orders o f  d i f f r a c t  on l i n e s  

a t  1/2 maximum i n t e n s i t y  were measured f o r  var ious mater ia ls  The 

r e s u l t s  are g iven i n  Table II. I t  i s  seen t h a t  no l i n e  broadening was 

observed f o r  ox id ized  specimens as compared t o  pure annealed Ag o r  an 

annealed unoxidized a l l oy .  

E I ec t ron  Mi croscopy 

obtained i n  t h e  present study i s  given by F igure I O .  There i s  a un i form 

The best transmi ss i on e I ec t ron  m i  crograph 

d i s t r i b u t i o n  o f  approximately spher ica l  p a r t i c l e s  i n  t h e  Ag-2 a t .  ’$ Mg 
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t h e  unoxidized mater ia l  d i d  no t  con ta in  any of  t he  e x t r a  d 

spots. Figure 12 i s  a t y p i c a l  d i f f r a c t i o n  pa t te rn  from t h  

mater ia l .  

'On the  bas is  o f  t he  resu'lts obtained on the  unox 

mater ia l  it was concluded t h a t  the e x t r a  d i f f r a c t i o n  spots 

a l l o y  ox id ized  a t  900OC. 

others w i t h  less c l a r i f y  y ie lded an average value of 55 A f o r  t he  rad ius 

Measurements made on t h i s  micrograph and on 
0 

of t h e  ox ide p a r t i c l e s  i n  t h i s  a l l o y .  Almost a l l  t he  p a r t i c l e s  f a l l  

w i t h i n  the  s i z e  range o f  50 t o  60 TI radius.  A selected area d i f f r a c t i o n  

p a t t e r n &  t h i s  specimen i s  given i n  Figure I I .  If the  p a r t i c l e s  seen i n  

the  t ransmission micrograph are a c t u a l l y  t h e  ox ide phase, then the re  

should be some evidence of  t h i s  phase i n  the  d e f f r a c t i o n  pa t te rn .  

examination of t h e  pa t te rn  revealed t h a t  there were d i f f r a c t i o n  spots 

Careful  

which were no t  f r o m t h e  Ag matr ix.  

i n t e n s i t y  and are d i f f i c u l t  t o  reproduce. Nevertheless, some o f  these 

These spots were o f  extremely low 

spots are noted i n  Figure 1 I .  

Because of t he  poor qual i t y  of t h e  f i I m s  used f o r  e lec t ron  

microscopy, and p a r t i c u l a r l y  the poor surfaces usua l ly  found, a specimen 

of  t he  unoxidized Ag-2 a t .  $ Mg a l  loy was th inned downed i n  exac t ly  t h e  

same manner as the  ox id ized  mater ia ls .  Unexpectedly, t h e  surfaces o f  

t h e  f i l m  o f  t h e  unoxidized mater ia l  were of  a poorer q u a l i t y  than those 

of t h e  ox id ized  mater ia ls .  E lect ron d i f f r a c t i o n  pat terns obtained f o r  

f f r a c t  

s unox 

dized 

on 

d i zed 

observed 

i n  the  p a t t e r n  o f  t he  ox id ized  mater ia l  were due t o  the  same second 

phase observed i n  the  e lec t ron  micrographs, and t h a t  t h i s  second phase 
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was n o t  due t o  any type o f  surface contaminat on e f f e c t .  Instead, t h i s  

second phase must be t h e  ox ide phase formed d r i n g  i n te rna l  ox ida t ion .  

Examination of t h e  mater ia l  ox id ized  a t  6OOOC and annealed a t  

900°C for  6-1/4 hours a l so  revealed some evidence for  t h e  presence o f  a 

second phase. 

poor, measurements y ie lded an average rad ius value o f  60 A: f o r  t h e  

second phase p a r t i c l e s .  

specimen a l so  contained e x t r a  d i f f r a c t i o n  spots n o t  due t o  t h e  mat r ix ,  

and t h i s  pa t te rn  i s  given i n  Figure 13. 

Although t h e  q u a l i t y  o f  t he  transmission micrograph was 

A selected area d i f f r a c t i o n  p a t t e r n  o f  t h i s  

A micrograph o f  a Ag-2 a t .  % Mg specimen ox id ized  a t  6OO0C 

was a l so  obtained. In  t h i s  case the re  were extremely small low i n t e n s i t y  

grey spots throughout t h e  micrograph which were bel ieved t o  be second 

phase p a r t i c l e s .  Measurements made on t h i s  micrograph ind ica ted  t h a t  

t h e  average rad ius was about 10 A.  There were a lso  a number o f  l a rge r  

p a r t i c l e s  w i t h  r a d i i o f  about 20 t o  30 w .  
0 

There were s u f f i c i e n t  ex t ra  e lec t ron  d i f f r a c t i o n  spots from 

t h e  ox ide phase t o  a l low indexing by rou t i ne  methods (15) .  I t  was 

found t h a t  t h e  t e n  r e f l e c t i o n s  found on t h e  two pat terns,  Figures I I  

and 13, corresponded t o  a mater ia l  w i t h  a face-centered-cubic c r y s t a l  

s t ruc tu re .  The l a t t i c e  parameters obta ined from the  pa t te rns  were 9.15 

and 8.96 E f o r  t h e  mater ia l  ox id ized a t  900°C and f o r  t h e  mater ia l  

ox id i zed  a t  6OOOC and annealed a t  900°C, respec t ive ly .  

t h e  l a t t i c e  parameter determination i s  about 0.2 1. The experimental 

and t h e o r e t i c a l  i n te rp lana r  spacings corresponding t o  t h e  d i f f r a c t i o n  

The accuracy of 
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spots from t h e  ox ide phase are given i n  Table 1 1 1 .  I t  i s  seen t h a t  t he re  

i s  very good agreement, i nd i ca t i ng  t h a t  t h e  indexing o f  t h e  d i f f r a c t i o n  

data was cor rec t .  

mater i a I s 

p a r t i c l e s  

creased w 

a l s o  obta 

D i  scuss ion  

The increases i n  hardness and l a t t i c e  parameter, and t h e i r  depen- 

dence on ox ida t i on  temperature, observed i n  t h i s  stuch/are i n  general agree- 

ment w i t h  previous inves t iga t ions .  Increases i n  the  hardness and l a t t i c e  

parameter o f  i n t e r n a l l y  ox id ized  Ag-Mg a l l o y s  have been observed i n  a 

number of s tud ies  ( 2 ,  3 ,  5, 6 ) .  However, previous t o  t h e  present study 

the re  were very l i t t l e  data concerning the  exact dependence o f  these 

increases on ox ida t i on  temperature. The observations i n  t h i s  study on t h e  

presence o f  very small d i sc re te  ox ide p a r t i c l e s  i n  t h e  ox id i zed  Ag-Mg a l l o y s  

i n d i c a t e  t h a t  t h e  increases i n  hardness and l a t t i c e  parameter o f  these 

must be r e l a t e d  t o  t h e  presence and morphology o f  t h e  ox ide  

s i z e  i n -  

ns ( I O )  

as those 

S .  

There was some 

t h  increas ing ox 

ned transmission 

obta ined i n  t h i s  study, f o r  

They too observed very smal 

some increase i n  p a r t i c l e  s 

evidence t o  i nd i ca te  t h a t  t he  p a r t i c l e  

da t ion  temperature. Br imhal l  and Hugg 

micrographs, o f  about the  same q u a l i t y  

i n t e r n a l l y  ox id ized  Ag-0.5 a t .  % Mg mater ia  

oxide p a r t i c l e s ,  about 50 w i n  radius, and 

ze w i th  increas ing ox ida t i on  temperature. 

general it has been observed, i n  o ther  a l l o y  systems w i t h  much la rger  

n 

ox ide  p a r t i c l e s ,  t h a t  t he  s i z e  o f  t h e  p a r t i c l e s  increases w i t h  inc reas ing  

o x i d a t i o n  temperature (16-181. Thus, it appears t h a t  both t h e  
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hardness and l a t t i c e  parameter of these mater ia ls  increase w i t h  decreasing 

ox ide p a r t i c l e  s ize.  

hardness and l a t t i c e  parameter on ox ida t i on  v e l o c i t y  would i n d i c a t e  t h a t  

t h e  morphology of t h e  ox ide phase i s  a l so  in f luenced by the  r a t e  of 

ox ida t ion .  

The e a r l i e r  r e s u l t s  concerning t h e  dependence o f  

I n  o rder  t o  produce mater ia ls  w i t h  a un i form s t ruc tu re ,  one 

ch must insure a constant boundary v e l o c i t y  o r  a range o f  v e l o c i t i e s  wh 

are  above a c r i t i c a l  value. 

imcrease i n  hardness and l a t t i c e  parameter of i n t e r n a l  The 

ox id ized  Ag-A 

However, t h e  

resemble t h a t  

no dependence 

conta in ing  0.4 and 1.9 a t .  % A I  

o f  350 t o  850OC. These mater ia  

probably resu l ted  i n  nonuniform 

specimens; hence, t h e  s t r u c t u r e  

Y 

a l l o y s  has a l so  been observed i n  several s tud ies  (1-4, 7 ) .  

emperature dependence o f  these increases d i d  n o t  appear t o  

of t h e  Ag-Mg mater ia ls .  Darken ( 7 )  repor ted t h a t  t he re  was 

o f  t h e  hardness on ox ida t i on  temperature for a l  loys 

when ox id ized  i n  t h e  temperature range 

s were ox id ized  under cond i t ions  which 

low ra tes  o f  ox ida t i on  w i t h i n  t h e  

of any one specimen was probably 

nonuniform. The r e s u l t s  o f  t h e  present study c l e a r l y  i nd i ca te  t h a t  both 

t h e  hardness and l a t t i c e  parameter increase w i t h  decreasing ox ida t i on  

temperature. Evidence f o r  t h e  presence o f  d i s c r e t e  ox ide p a r t i c l e s  i n  

such mater ia ls  has been given by Darken ( 7 )  and Swann (9 ) .  Here too t h e  

p a r t i c l e s  were spher ica l  and extremely small. The p a r t i c l e s  ranged i n  

s i z e  f r o m  about 15 t o  75 A i n  radius as determined by d i r e c t  measurement 

on t ransmiss ion micrographs. I t  i s  concluded t h a t  t h e  s t r u c t u r e  and 

p r o p e r t i e s  o f  the  ox id ized  Ag-AI and Ag-Mg mater ia ls  are very s i m i l a r .  

0 
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The s t r a i n s  present i n  t h e  ox id ized  mater ia ls  as evidenced by t h e  increases 

i n  t h e  l a t t i c e  parameter over the  values e i t h e r  f o r  pure s i l v e r  or  f o r  

Ag-Mg or Ag-0 s o l i d  so lu t i ons  must r e s u l t  from the  d ispers ion  o f  t h e  very 

small oxide p a r t i c l e s .  The f a c t  t h a t  t he re  i s  no x-ray l i n e  broadening 

suggests t h a t  t h e  s t r a i n s  i n  t h e  m a t r i x  are un i fo rmly  d i s t r i b u t e d  

throughout macroscopic regions such t h a t  t he  i n te rp lana r  spacings are  

increased i n  a homogeneous fashion and r e s u l t  i n  a s h i f t  o f  t h e  d i f f r a c t i o n  

l i n e s  w i thout  any broadening (19) .  The two phase mater ia l  may be con- 

s idered as analogous t o  s u b s t i t u t i o n a l  s o l i d  s o l u t  

These increases i n  l a t t i c e  parameter are 

coherency between t h e  ox ide  p a r t i c l e s  and t h e  matr 

coherency i s  suggested by t h e  observations o f  s t r a  

ons ( 2 0 ,  21). 

most probably due t o  

x. The presence o f  

n con t ras t  i n  t rans-  

mission e lec t ron  micrographs by Br imhal l  and Huggins (IO) and t o  a l i m i t e d  

ex ten t  i n  some o f  t h e  micrographs obtained i n  t h e  present study. 

Add i t i ona l l y ,  t he re  were on ly  a small number of d i f f r a c t i o n  spots and no t  

r i n g s  a t t r i b u t a b l e  t o  t h e  ox ide phase i n  t h e  e lec t ron  d i f f r a c t i o n  pat terns,  

and t h i s  ind ica tes  t h a t  t h e  p a r t i c l e s  are no t  randomly o r ien ted .  

Although t h e  s t r u c t u r e  o f  t h e  ox ide  phase i n  t h e  Ag-Mg mate r ia l s  

was found t o  be face-centered-cubic, as i s  bu l k  MgO, t h e  l a t t i c e  parameter 

was much grea ter  than the  4.2 f o r  bu l k  MgO. I t  i s  be l ieved t h a t  t h i s  

r e s u l t  ind ica tes  t h a t  t h e  ox ide phase may be an Mg-Ag-0 complex oxide. 

Many such te rna ry  oxides e x i s t  w i th  t h i s  c r y s t a l  s t r u c t u r e  and have l a t t i c e  

parameters i n  t h e  range of 8.0 t o  9 . 3  A. The much la rge r  l a t t i c e  parameter 

of t h e  ox ide phase i n  comparison t o  t h e  Ag m a t r i x  does no t  preclude t h e  

0 
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exis tence o f  coherency between the  two mater ia ls .  The important f a c t o r  

i s  t h a t  t he re  should be in te rp lanar  spacings i n  each phase which are  

near ly  equal. 

m a t r i x  { I l l )  planes, f o r  t h e  Ag-2 a t .  % Mg mater ia l  e i t h e r  ox id i zed  a t  

900°C o r  ox id ized  a t  600°C and annealed a t  900°C, i s  2.36 A and t h e  

spacing o f  t h e  ox ide E2221 planes i s  about 2.61 A. This phenomenon 

has a l so  been observed i n  i n t e r n a l l y  ox id ized  CU-AI a l l o y s  which conta in  

y-alumina p a r t i c l e s ,  face-centered-cubic w i t h  a parameter of 7.9 x,  which 

are  found t o  be coherent w i t h  t h e  Cu m a t r i x  (22). The observat ion t h a t  

t h e  p a r t i c l e s  are p r e f e r e n t i a l l y  o r ien ted  i n  t h e  ma t r i x  a l s o  supports 

t h  i s i n te rp re ta t i on .  

I n  t h e  present study t h e  observed spacings o f  t h e  Ag 

0 

0 

I t  should a l so  be noted t h a t  Darken (7 )  has repor ted t h a t  t h e  

ox ide  phase formed i n  i n t e r n a l l y  ox id ized  Ag-AI a l l o y s  does n o t  correspond, 

t o  bu l k  alumina. Evidence was presented t o  show t h a t  t h e  r a t i o  o f  oxygen 

t o  aluminum atoms i n  t h e  ox ide was grea ter  than t h e  1.5 associated w i t h  

A1203. 

The s i t u a t i o n  i s  by no means f u l l y  understood, b u t  apparently it i s  

l i k e l y  t h a t  t h e  i n t e r n a l  ox ida t i on  process may r e s u l t  i n  t h e  formation o f  

i n  bu lk  form. 

This could r e s u l t  from the formation of  a complex te rna ry  oxide. 

Th is  seems t o  be p a r t i c u l a r l y  

small ox ide p a r t i c l e s  a re  formed. 

i ng  behavior o f  t h e  ox id i zed  

i s  a change i n  t h e  morphology of 

t h e  ox ide  d ispers ion dur ing  annealing a .  temperatures above t h e  ox ida t i on  

temperature. The f a c t  t h a t  constant values of both hardness and l a t t i c e  

parameter are at ta ined,  and t h a t  these values are exac t ly  t he  same as f o r  

ox ides which are no t  observed 

t r u e  f o r  t h e  systems i n  which 

The observations on 

Ag-2 a t .  $ Mg a l l o y  i nd i ca te  

extreme I y 

t h e  annea 

h a t  t he re  
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t h e  mater ia l  ox id ized  a t  t he  annealing temperature, suggest t h a t  t he re  

i s  some k i n d  of p a r t i c l e  coarsening process t a k i n g  p lace dur ing  annealing 

and ox ida t i on  and t h a t  some type of e q u i l i b r i u m  p a r t i c l e  s i z e  i s  reached. 

Fur ther  work i s  necessary f o r  a complete explanat ion o f  t h i s  phenomenon. 

Other s tud ies  have a l so  made note of observations which support t h i s  

i n t e r p r e t a t i o n  ( 2 ,  IO, 23, 24) .  

The r e s u l t s  o f  the  present study have pointed o u t  t h e  lack 

of o u r  complete understanding o f  t h e  i n t e r n a l  ox ida t i on  process. I t  

would be advantageous t o  have a complete theory dhich could r e l a t e  the  

morphology o f  t h e  ox ide d ispers io  t o  t h e  ox ida t i on  temperature, r a t e  

o f  ox ida t ion ,  so lu te  content, and annealing t i m e  and temperature. Such 

a theory, although somewhat specu a t i v e  has been formulated, and w i l l  

be presented i n  a separate paper. Another area t o  be f u r t h e r  inves t iga ted  

i s  t he  exact  re la t i onsh ips  between t h e  p roper t i es  and s t ruc tu res  o f  these 

ox id ized  mater ia ls .  Add i t iona l  experimental work i s  being c a r r i e d  o u t  

on the  room and e levated temperature mechanical p roper t ies  o f  these 

materi  a I s . 
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Table I 

Composition o f  t h e  Silver-Magnesium 

and Silver-Aluminum A l l oys  

Wet Chemical Spectrographic 
Nomi na I Compos i ti on Analysis, w t  % Estimates, ppm 

Ag + I a t .  % Mg 
(0.24 w t .  $1 0.30 99.70 500 I O  20 50 t r a c e  

Ag + 2 a t .  % Mg 
(0.47 w t .  %1 0.48 99.56 300 100 100 t race  t r a c e  

Ag + 2 a t .  % A I  
(0.50 w t .  % I  0.52 99.50 500 I O  50 50 t r a c e  



Table I I  

X-Ray Line Broadening Data 
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Width a t  1/2 Maximum 
A I  loy Treatment I ntens i t y  , a r b i t r a r y  un i t s  

( I l l )  ( 220 1 (31 I )  

Pure A g  annea I ed 3.7 4.4 6.7 

2 a t .  % Mg annea I ed 4 .O 4.8 6.3 

I at .  % Mg ox id ized a t  
6OOOC 4 .O 4.5 6.8 

I at .  ,% Mg ox id ized  a t  
7OO0C 3.8 4.4 6.8 

2 a t .  % Mg ox id ized  a t  
6OO0C 3.7 5.0 6.7 

2 a t .  % Mg ox id ized  a t  
8OO0C 4. I 4.7 6.7 

2 a t .  % Mg ox id ized  a t  
9oooc 4.3 5.3 7 .O 

2 a t .  % . A I  ox id ized a t  
6OO0C ' 4.1 5. I 6.2 

2 at .  % A I  ox id ized a t  
7OO0C 4.0 4.0 6.4 

2 a t .  % A I  ox id ized a t  
8OO0C 3. I 5. I 6 .O 



Table I l l  
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In te rp lana r  Spacings ( 8 )  of  Oxide Phase 

Ag-2.0 a t .  % Mg 
ox id i zed  a t  60OoC; 
annea I ed a t  900°C 

Ag-2.0 a t .  % Mg 
S ecimen 

( a )  ( b )  
hKI d exp. d theor. d exp. d theor. 

200 4.46 4.58 

- 

220 

31 I 

222 

400 

33 I 

333 

53 I 

442 

3.27 3.24 

2.86 2.76 

2.61 2.64 

2.26 2.29 

444 

2.22 2.24 

2.05 2.06 

I .77 I .72 

I .53 I .51 

I .47 I .49 

I .28 I .29 

( a )  

( b )  

Theoret ica l  d spacings ca lcu la ted  on t h e  bas is  of  a, = 9.15 E. 
Theorical d spacings ca lcu la ted  on t h e  bas is  of a, = 8.96 1. 
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FIGURE 2. HARDNESS VERSUS OXIDATION 
TEMPERATURE FOR AQ -Mg ALLOYS 
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